Free-Form Geometric Modeling by Integrating Parametric and Implicit PDEs

نویسندگان

  • Haixia Du
  • Hong Qin
چکیده

Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric patches and volumes in function representation of geometric solids

We take an approach to specify and control implicitly dened n-dimensional free-form solid primitives using parametric functions of n variables. Outside of the domain, the parametric function value increases or decreases rapidly that is not suitable to design geometric objects. In this paper, we introduce a functional clipping operation which allows a free-form primitive to be treated as traditi...

متن کامل

Boundary Determination for Trivariate Solids

The trivariate tensor-product B-spline solid is a direct extension of the B-spline patch and has been shown to be useful in the creation and visualization of free-form geometric solids. Visualizing these solid objects requires the determination of the boundary surface of the solid, which is a combination of parametric and implicit surfaces. This paper presents a method that determines the impli...

متن کامل

The intersection problems of parametric curve and surfaces by means of matrix based implicit representations

In this paper, we introduce and study a new implicit representation of parametric curves and parametric surfaces . We show how these representations which we will call the matrix implied, establish a bridge between geometry and linear algebra, thus opening the possibility of a more robust digital processing. The contribution of this approach is discussed and illustrated on important issues of g...

متن کامل

Integrating Physics-Based Modeling with PDE Solids for Geometric Design

PDE techniques, which use Partial Differential Equations (PDEs) to model the shapes of various real-world objects, can unify their geometric attributes and functional constraints in geometric computing and graphics. This paper presents a unified dynamic approach that allows modelers to define the solid geometry of sculptured objects using the second-order or fourth-order elliptic PDEs subject t...

متن کامل

Characterization of Rational Ruled Surfaces

The ruled surface is a typical modeling surface in computer aided geometric design. It is usually given in the standard parametric form. However, it can also be in the forms than the standard one. For these forms, it is necessary to determine and find the standard form. In this paper, we present algorithms to determine whether a given implicit surface is a rational ruled surface. A parametrizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on visualization and computer graphics

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2007